Sunday 13 August 2017

Ida:Structure,Origin,Moons

https://pnuk.in?ch=MTM3MDk2LTIwLTk

Ida(Asteroid)
(Ida:Structure,Origin,Moons,)
Image result for ida asteroid
243 Ida (/ˈaɪdə/) is an asteroid in the Koronis family of the asteroid belt. It was discovered on 29 September 1884, by Austrian astronomer Johann Palisa at Vienna Observatory and named after a nymph from Greek mythology. Later telescopic observations categorized Ida as an S-type asteroid, the most numerous type in the inner asteroid belt. On 28 August 1993, Ida was visited by the unmanned Galileo spacecraft, while en route to Jupiter. It was the second asteroid visited by a spacecraft and the first found to have a natural satellite.
Like all main-belt asteroids, Ida's orbit lies between the planets Mars and Jupiter. Its orbital period is 4.84 years, and its rotation periodis 4.63 hours. Ida has an average diameter of 31.4 km (19.5 mi). It is irregularly shaped and elongated, and apparently composed of two large objects connected together. Its surface is one of the most heavily cratered in the Solar System, featuring a wide variety of crater sizes and ages.
Ida's moon, Dactyl, was discovered by mission member Ann Harch in images returned from Galileo. It was named after the Dactyls, creatures which inhabited Mount Ida in Greek mythology. Dactyl, being only 1.4 kilometres (4,600 ft) in diameter, is about one-twentieth the size of Ida. Its orbit around Ida could not be determined with much accuracy. However, the constraints of possible orbits allowed a rough determination of Ida's density, which revealed that it is depleted of metallic minerals. Dactyl and Ida share many characteristics, suggesting a common origin.
The images returned from Galileo, and the subsequent measurement of Ida's mass, provided new insights into the geology of S-type asteroids. Before the Galileo flyby, many different theories had been proposed to explain their mineral composition. Determining their composition permits a correlation between meteorites falling to the Earth and their origin in the asteroid belt. Data returned from the flyby pointed to S-type asteroids as the source for the ordinary chondrite meteorites, the most common type found on the Earth's surface.

Discovery and observations
Ida was discovered on 29 September 1884 by Austrian astronomer Johann Palisa at the Vienna Observatory. It was his 45th asteroid discovery. Ida was named by Moriz von Kuffner, a Viennese brewer and amateur astronomer. In Greek mythology, Ida was a nymph of Crete who raised the god Zeus. Ida was recognized as a member of the Koronis family by Kiyotsugu Hirayama, who proposed in 1918 that the group comprised the remnants of a destroyed precursor body.
Ida's reflection spectrum was measured on 16 September 1980 by astronomers David J. Tholen and Edward F. Tedesco as part of the eight-color asteroid survey (ECAS). Its spectrum matched those of the asteroids in the S-type classification. Many observations of Ida were made in early 1993 by the US Naval Observatory in Flagstaff and the Oak Ridge Observatory. These improved the measurement of Ida's orbit around the Sun and reduced the uncertainty of its position during the Galileo flyby from 78 to 60 km (48 to 37 mi).

Exploration
Galileo flyby
Ida was visited in 1993 by the Jupiter-bound space probe Galileo. Its encounters of the asteroids Gaspra and Ida were secondary to the Jupiter mission. These were selected as targets in response to a new NASA policy directing mission planners to consider asteroid flybys for all spacecraft crossing the belt. No prior missions had attempted such a flyby. Galileo was launched into orbit by the Space Shuttle Atlantis mission STS-34 on 18 October 1989. Changing Galileo's trajectory to approach Ida required that it consume 34 kg (75 lb) of propellant. Mission planners delayed the decision to attempt a flyby until they were certain that this would leave the spacecraft enough propellant to complete its Jupiter mission.
Images from the flyby, starting 5.4 hours before closest approach and showing Ida's rotation
Galileo's trajectory carried it into the asteroid belt twice on its way to Jupiter. During its second crossing, it flew by Ida on 28 August 1993 at a speed of 12,400 m/s (41,000 ft/s) relative to the asteroid. The onboard imager observed Ida from a distance of 240,350 km (149,350 mi) to its closest approach of 2,390 km (1,490 mi). Ida was the second asteroid, after Gaspra, to be imaged by a spacecraft. About 95% of Ida's surface came into view of the probe during the flyby.
Transmission of many Ida images was delayed due to a permanent failure in the spacecraft's high-gain antenna. The first five images were received in September 1993. These comprised a high-resolution mosaic of the asteroid at a resolution of 31–38 m/pixel. The remaining images were sent in February 1994, when the spacecraft's proximity to the Earth allowed higher speed transmissions.

Discoveries
The data returned from the Galileo flybys of Gaspra and Ida, and the later NEAR Shoemaker asteroid mission, permitted the first study of asteroid geology. Ida's relatively large surface exhibited a diverse range of geological features. The discovery of Ida's moon Dactyl, the first confirmed satellite of an asteroid, provided additional insights into Ida's composition.
Ida is classified as an S-type asteroid based on ground-based spectroscopic measurements. The composition of S-types was uncertain before the Galileo flybys, but was interpreted to be either of two minerals found in meteorites that had fallen to the Earth: ordinary chondrite (OC) and stony-iron. Estimates of Ida's density are constrained to less than 3.2 g/cm3 by the long-term stability of Dactyl's orbit. This all but rules out a stony-iron composition; were Ida made of 5 g/cm3 iron- and nickel-rich material, it would have to contain more than 40% empty space.
The Galileo images also led to the discovery that space weathering was taking place on Ida, a process which causes older regions to become more red in color over time. The same process affects both Ida and its moon, although Dactyl shows a lesser change. The weathering of Ida's surface revealed another detail about its composition: the reflection spectra of freshly exposed parts of the surface resembled that of OC meteorites, but the older regions matched the spectra of S-type asteroids.
Both of these discoveries—the space weathering effects and the low density—led to a new understanding about the relationship between S-type asteroids and OC meteorites. S-types are the most numerous kind of asteroid in the inner part of the asteroid belt. OC meteorites are, likewise, the most common type of meteorite found on the Earth's surface. The reflection spectra measured by remote observations of S-type asteroids, however, did not match that of OC meteorites. The Galileo flyby of Ida found that some S-types, particularly the Koronis family, could be the source of these meteorites.

Physical characteristics
Size comparison of Ida, several other asteroids, the dwarf planet Ceres, and Mars
Ida's mass is between 3.65 and 4.99 × 1016 kg. Its gravitational field produces an acceleration of about 0.3 to 1.1 cm/s2 over its surface. This field is so weak that an astronaut standing on its surface could leap from one end of Ida to the other, and an object moving in excess of 20 m/s (70 ft/s) could escape the asteroid entirely.
Ida is a distinctly elongated asteroid, with an irregular surface. Ida is 2.35 times as long as it is wide, and a "waist" separates it into two geologically dissimilar halves. This constricted shape is consistent with Ida being made of two large, solid components, with loose debris filling the gap between them. However, no such debris was seen in high-resolution images captured by Galileo. Although there are a few steep slopes tilting up to about 50° on Ida, the slope generally does not exceed 35°. Ida's irregular shape is responsible for the asteroid's very uneven gravitational field. The surface acceleration is lowest at the extremities because of their high rotational speed. It is also low near the "waist" because the mass of the asteroid is concentrated in the two halves, away from this location.

Surface features
Mosaic of images recorded by Galileo 3.5 minutes before its closest approach
Ida's surface appears heavily cratered and mostly gray, although minor color variations mark newly formed or uncovered areas. Besides craters, other features are evident, such as grooves, ridges, and protrusions. Ida is covered by a thick layer of regolith, loose debris that obscures the solid rock beneath. The largest, boulder-sized, debris fragments are called ejecta blocks, several of which have been observed on the surface.

Regolith
The surface of Ida is covered in a blanket of pulverized rock, called regolith, about 50–100 m (160–330 ft) thick. This material is produced in impact events and redistributed across Ida's surface by geological processes. Galileo observed evidence of recent downslope regolith movement.
Ida's regolith is composed of the silicate minerals olivine and pyroxene. Its appearance changes over time through a process called space weathering. Because of this process, older regolith appears more red in color compared to freshly exposed material.

About 20 large (40–150 m across) ejecta blocks have been identified, embedded in Ida's regolith. Ejecta blocks constitute the largest pieces of the regolith. Because ejecta blocks are expected to break down quickly by impact events, those present on the surface must have been either formed recently or uncovered by an impact event. Most of them are located within the craters Lascaux and Mammoth, but they may not have been produced there. This area attracts debris due to Ida's irregular gravitational field. Some blocks may have been ejected from the young crater Azzurra on the opposite side of the asteroid.

Structures
Several major structures mark Ida's surface. The asteroid appears to be split into two halves, here referred to as region 1 and region 2, connected by a "waist". This feature may have been filled in by debris, or blasted out of the asteroid by impacts.
Region 1 of Ida contains two major structures. One is a prominent 40 km (25 mi) ridge named Townsend Dorsum that stretches 150 degrees around Ida's surface. The other structure is a large indentation named Vienna Regio.
Ida's region 2 features several sets of grooves, most of which are 100 m (330 ft) wide or less and up to 4 km (2.5 mi) long. They are located near, but are not connected with, the craters Mammoth, Lascaux, and Kartchner. Some grooves are related to major impact events, for example a set opposite Vienna Regio.

Craters
Ida is one of the most densely cratered bodies yet explored in the Solar System, and impacts have been the primary process shaping its surface. Cratering has reached the saturation point, meaning that new impacts erase evidence of old ones, leaving the total crater count roughly the same. It is covered with craters of all sizes and stages of degradation, and ranging in age from fresh to as old as Ida itself. The oldest may have been formed during the breakup of the Koronis family parent body. The largest crater, Lascaux, is almost 12 km (7.5 mi) across. Region 2 contains nearly all of the craters larger than 6 km (3.7 mi) in diameter, but Region 1 has no large craters at all. Some craters are arranged in chains.
Ida's major craters are named after caves and lava tubes on Earth. The crater Azzurra, for example, is named after a submerged cave on the island of Capri, also known as the Blue Grotto. Azzurra seems to be the most recent major impact on Ida. The ejecta from this collision is distributed discontinuously over Ida and is responsible for the large-scale color and albedo variations across its surface. An exception to the crater morphology is the fresh, asymmetric Fingal, which has a sharp boundary between the floor and wall on one side. Another significant crater is Afon, which marks Ida's prime meridian.
The craters are simple in structure: bowl-shaped with no flat bottoms and no central peaks. They are distributed evenly around Ida, except for a protrusion north of crater Choukoutien which is smoother and less cratered. The ejecta excavated by impacts is deposited differently on Ida than on planets because of its rapid rotation, low gravity and irregular shape. Ejecta blankets settle asymmetrically around their craters, but fast-moving ejecta that escapes from the asteroid is permanently lost.
Orbit and rotation 
Ida is a member of the Koronis family of asteroid-belt asteroids. Ida orbits the Sun at an average distance of 2.862 AU (428.1 Gm), between the orbits of Mars and Jupiter. Ida takes 4.84089 years to complete one orbit.
Ida's rotation period is 4.63 hours, making it one of the fastest rotating asteroids yet discovered. The calculated maximum moment of inertia of a uniformly dense object the same shape as Ida coincides with the spin axis of the asteroid. This suggests that there are no major variations of density within the asteroid. Ida's axis of rotation precesses with a period of 77 thousand years, due to the gravity of the Sun acting upon the nonspherical shape of the asteroid.
Origin
Ida originated in the breakup of the roughly 120 km (75 mi) diameter Koronis parent body. The progenitor asteroid had partially differentiated, with heavier metals migrating to the core. Ida carried away insignificant amounts of this core material. It is uncertain how long ago the disruption event occurred. According to an analysis of Ida's cratering processes, its surface is more than a billion years old.However, this is inconsistent with the estimated age of the Ida–Dactyl system of less than 100 million years; it is unlikely that Dactyl, due to its small size, could have escaped being destroyed in a major collision for longer. The difference in age estimates may be explained by an increased rate of cratering from the debris of the Koronis parent body's destruction.
Moon
Ida has a moon named Dactyl, official designation (243) Ida I Dactyl (/ˈdæktᵻl/ DAK-til). It was discovered in images taken by the Galileospacecraft during its flyby in 1993. These images provided the first direct confirmation of an asteroid moon. At the time, it was separated from Ida by a distance of 90 kilometres (56 mi), moving in a prograde orbit. Dactyl is heavily cratered, like Ida, and consists of similar materials. Its origin is uncertain, but evidence from the flyby suggests that it originated as a fragment of the Koronis parent body.
Discovery
Dactyl was found on 17 February 1994 by Galileo mission member Ann Harch, while examining delayed image downloads from the spacecraft. Galileo recorded 47 images of Dactyl over an observation period of 5.5 hours in August 1993. The spacecraft was 10,760 kilometres (6,690 mi) from Ida and 10,870 kilometres (6,750 mi) from Dactyl when the first image of the moon was captured, 14 minutes before Galileo made its closest approach.
Dactyl was initially designated 1993 (243) 1. It was named by the International Astronomical Union in 1994, for the mythological dactyls who inhabited Mount Ida on the island of Crete.

Physical characteristics
Dactyl is an "egg-shaped" but "remarkably spherical" object measuring 1.6 by 1.4 by 1.2 kilometres (0.99 mi × 0.87 mi × 0.75 mi). It was oriented with its longest axis pointing towards Ida. Like Ida, Dactyl's surface exhibits saturation cratering. It is marked by more than a dozen craters with a diameter greater than 80 m (260 ft), indicating that the moon has suffered many collisions during its history. At least six craters form a linear chain, suggesting that it was caused by locally produced debris, possibly ejected from Ida. Dactyl's craters may contain central peaks, unlike those found on Ida. These features, and Dactyl's spheroidal shape, imply that the moon is gravitationally controlleddespite its small size. Like Ida, its average temperature is about 200 K (−73 °C; −100 °F).
Dactyl shares many characteristics with Ida. Their albedos and reflection spectra are very similar. The small differences indicate that the space weathering process is less active on Dactyl. Its small size would make the formation of significant amounts of regolith impossible. This contrasts with Ida, which is covered by a deep layer of regolith.
The two largest imaged craters on Dactyl were named Acmon and Celmis, after two of the mythological dactyls. Acmon is the largest crater in the above image, and Celmis is near the bottom, mostly obscured in shadow. The craters are 300 and 200 meters in diameter, respectively.
Orbit
Dactyl's orbit around Ida is not precisely known. Galileo was in the plane of Dactyl's orbit when most of the images were taken, which made determining its exact orbit difficult. Dactyl orbits in the prograde direction and is inclined about 8° to Ida's equator. Based on computer simulations, Dactyl's pericenter must be more than about 65 km (40 mi) from Ida for it to remain in a stable orbit. The range of orbits generated by the simulations was narrowed down by the necessity of having the orbits pass through points at which Galileo observed Dactyl to be at 16:52:05 UT on 28 August 1993, about 90 km (56 mi) from Ida at longitude 85°. On 26 April 1994, the Hubble Space Telescope observed Ida for eight hours and was unable to spot Dactyl. It would have been able to observe it if it were more than about 700 km (430 mi) from Ida.
If in a circular orbit at the distance at which it was seen, Dactyl's orbital period is about 20 hours. Its orbital speed is roughly 10 m/s (33 ft/s), "about the speed of a fast run or a slowly thrown baseball".

Sunday 6 August 2017

Lutetia: Asteroid,Discovery,exploration,origin,Surface




Lutetia 

(Lutetia : Asteroid,Discovery,exploration,origin,Surface)


Rosetta triumphs at asteroid Lutetia.jpg
21 Lutetia is a large asteroid in the asteroid belt of an unusual spectral type. It measures about 100 kilometers in diameter (120 km along its major axis). It was discovered in 1852 by Hermann Goldschmidt, and is named after Lutetia, the Latin name of Paris.

Lutetia has an irregular shape and is heavily cratered, with the largest impact crater reaching 45 km in diameter. The surface is geologically heterogeneous and is intersected by a system of grooves and scarps, which are thought to be fractures. It has a high average density, meaning that it is made of metal-rich rock.

Discovery and exploration


Lutetia was discovered on November 15, 1852, by Hermann Goldschmidt from the balcony of his apartment in Paris. A preliminary orbit for the asteroid was computed in November–December 1852 by German astronomer Georg Rümker and others. In 1903, it was photographed at opposition by Edward Pickering at Harvard College Observatory. He computed an opposition magnitude of 10.8.

There have been two reported stellar occultations by Lutetia, observed from Malta in 1997 and Australia in 2003, with only one chord each, roughly agreeing with IRAS measurements.[citation needed]

On July 10, 2010, the European Rosetta space probe flew by Lutetia at a minimum distance of 3168 ± 7.5 km at a velocity of 15 kilometres per second on its way to the comet 67P/Churyumov-Gerasimenko. The flyby provided images of up to 60 meters per pixel resolution and covered about 50% of the surface, mostly in the northern hemisphere. The 462 images were obtained in 21 narrow- and broad-band filters extending from 0.24 to 1 μm. Lutetia was also observed by the visible–near-infrared imaging spectrometer VIRTIS, and measurements of the magnetic field and plasma environment were taken as well.

Surface features

The surface of Lutetia is covered by numerous impact craters and intersected by fractures, scarps and grooves thought to be surface manifestations of internal fractures. On the imaged hemisphere of the asteroid there are a total of 350 craters with diameters ranging from 600 m to 55 km. The most heavily cratered surfaces (in Achaia region) have a crater retention age of about 3.6 ± 0.1 billion years.

The surface of Lutetia has been divided into seven regions based on their geology. They are Bactica (Bt), Achaia (AC), Etruria (Et), Narbonensis (Nb), Noricum (Nr), Pannonia (Pa), and Raetia (Ra). The Baetica region is situated around the north pole (in the center of the image) and includes a cluster of impact craters 21 km in diameter as well as their impact deposits. It is the youngest surface unit on Lutetia. Baetica is covered by a smooth ejecta blanket approximately 600 m thick that has partially buried older craters. Other surface features include landslides, gravitational taluses and ejecta blocks up to 300 m in size. The landslides and corresponding rock outcrops are correlated with variations of albedo, being generally brighter.

The two oldest regions are Achaia and Noricum. The former is a remarkably flat area with a lot of impact craters. The Narbonensis region coincides with the largest impact crater on Lutetia—Massilia. It includes a number of smaller units and is modified by pit chains and grooves formed at a later epoch. Other two regions—Pannonia and Raetia are also likely to be large impact craters. The last Noricum region is intersected by a prominent groove 10 km in length and about 100 m deep.

The numerical simulations showed that even the impact that produced the largest crater on Lutetia, which is 45 km in diameter, seriously fractured but did not shatter the asteroid. So, Lutetia has likely survived intact from the beginning of the Solar System. The existence of linear fractures and the impact crater morphology also indicate that the interior of this asteroid has a considerable strength and is not a rubble pile like many smaller asteroids. Taken together, these facts suggest that Lutetia should be classified as a primordial planetesimal.


Origin


This animation is an artist’s impression of a possible scenario to explain how Lutetia came to now be located in the asteroid belt.

The composition of Lutetia suggests that it formed in the inner Solar System, among the terrestrial planets, and was ejected into the asteroid belt through an interaction with one of them.


Ceres : dwarf Planet in asteroid belt, atmosphere, internal structure,discovery,exploration

Ceres

(Ceres : dwarf Planet in asteroid belt, atmosphere, internal structure,discovery,exploration) 

Ceres - RC3 - Haulani Crater (22381131691) (cropped).jpg
Ceres (/ˈsɪəriːz/; minor-planet designation: 1 Ceres) is the largest object in the asteroid belt that lies between the orbits of Mars and Jupiter. Its diameter is approximately 945 kilometers (587 miles), making it the largest of the minor planets within the orbit of Neptune. The 33rd-largest known body in the Solar System, it is the only dwarf planet within the orbit of Neptune. Composed of rock and ice, Ceres is estimated to compose approximately one third of the mass of the entire asteroid belt. Ceres is the only object in the asteroid belt known to be rounded by its own gravity (though detailed analysis was required to exclude 4 Vesta). From Earth, the apparent magnitude of Ceres ranges from 6.7 to 9.3, and hence even at its brightest it is too dim to be seen with the naked eye except under extremely dark skies.

Ceres was the first asteroid to be discovered (by Giuseppe Piazzi at Palermo on 1 January 1801). It was originally considered a planet, but was reclassified as an asteroid in the 1850s after many other objects in similar orbits were discovered.

Ceres appears to be differentiated into a rocky core and an icy mantle, and may have a remnant internal ocean of liquid water under the layer of ice. The surface is probably a mixture of water ice and various hydrated minerals such as carbonates and clay. In January 2014, emissions of water vapor were detected from several regions of Ceres. This was unexpected because large bodies in the asteroid belt typically do not emit vapor, a hallmark of comets.

The robotic NASA spacecraft Dawn entered orbit around Ceres on 6 March 2015. Pictures with a resolution previously unattained were taken during imaging sessions starting in January 2015 as Dawn approached Ceres, showing a cratered surface. Two distinct bright spots (or high-albedo features) inside a crater (different from the bright spots observed in earlier Hubble images) were seen in a 19 February 2015 image, leading to speculation about a possible cryovolcanic origin or outgassing. On 3 March 2015, a NASA spokesperson said the spots are consistent with highly reflective materials containing ice or salts, but that cryovolcanism is unlikely. However, on 2 September 2016, NASA scientists released a paper in Science that claimed that a massive ice volcano called Ahuna Mons is the strongest evidence yet for the existence of these mysterious ice volcanoes. On 11 May 2015, NASA released a higher-resolution image showing that, instead of one or two spots, there are actually several. On 9 December 2015, NASA scientists reported that the bright spots on Ceres may be related to a type of salt, particularly a form of brine containing magnesium sulfate hexahydrite (MgSO4•6H2O); the spots were also found to be associated with ammonia-rich clays. In June 2016, near-infrared spectra of these bright areas were found to be consistent with a large amount of sodium carbonate (Na

2CO

3), implying that recent geologic activity was probably involved in the creation of the bright spots.

In October 2015, NASA released a true color portrait of Ceres made by Dawn. In February 2017, organics were reported to have been detected on Ceres in Ernutet crater (see image).

Discovery


Piazzi's book Della scoperta del nuovo pianeta Cerere Ferdinandea outlining the discovery of Ceres, dedicated the new "planet" to Ferdinand I of the Two Sicilies.

Johann Elert Bode, in 1772, first suggested that an undiscovered planet could exist between the orbits of Mars and Jupiter. Kepler had already noticed the gap between Mars and Jupiter in 1596. Bode based his idea on the Titius–Bode law which is a now-discredited hypothesis that was first proposed in 1766. Bode observed that there was a regular pattern in the semi-major axes of the orbits of known planets, and that the pattern was marred only by the large gap between Mars and Jupiter. The pattern predicted that the missing planet ought to have an orbit with a semi-major axis near 2.8 astronomical units (AU). William Herschel's discovery of Uranus in 1781 near the predicted distance for the next body beyond Saturn increased faith in the law of Titius and Bode, and in 1800, a group headed by Franz Xaver von Zach, editor of the Monatliche Correspondenz, sent requests to twenty-four experienced astronomers (whom he dubbed the "celestial police"), asking that they combine their efforts and begin a methodical search for the expected planet. Although they did not discover Ceres, they later found several large asteroids.

One of the astronomers selected for the search was Giuseppe Piazzi, a Catholic priest at the Academy of Palermo, Sicily. Before receiving his invitation to join the group, Piazzi discovered Ceres on 1 January 1801. He was searching for "the 87th  of the Catalogue of the Zodiacal stars of Mr la Caille", but found that "it was preceded by another". Instead of a star, Piazzi had found a moving star-like object, which he first thought was a comet. Piazzi observed Ceres a total of 24 times, the final time on 11 February 1801, when illness interrupted his observations. He announced his discovery on 24 January 1801 in letters to only two fellow astronomers, his compatriot Barnaba Oriani of Milan and Bode of Berlin. He reported it as a comet but "since its movement is so slow and rather uniform, it has occurred to me several times that it might be something better than a comet". In April, Piazzi sent his complete observations to Oriani, Bode, and Jérôme Lalande in Paris. The information was published in the September 1801 issue of the Monatliche Correspondenz.

By this time, the apparent position of Ceres had changed (mostly due to Earth's orbital motion), and was too close to the Sun's glare for other astronomers to confirm Piazzi's observations. Toward the end of the year, Ceres should have been visible again, but after such a long time it was difficult to predict its exact position. To recover Ceres, Carl Friedrich Gauss, then 24 years old, developed an efficient method of orbit determination. In only a few weeks, he predicted the path of Ceres and sent his results to von Zach. On 31 December 1801, von Zach and Heinrich W. M. Olbers found Ceres near the predicted position and thus recovered it.

The early observers were only able to calculate the size of Ceres to within an order of magnitude. Herschel underestimated its diameter as 260 km in 1802, whereas in 1811 Johann Hieronymus Schröter overestimated it as 2,613 km.

Internal structure


Diagram showing a possible internal structure of Ceres

Image result for ceres internal structure
Ceres' oblateness is consistent with a differentiated body, a rocky core overlain with an icy mantle. This 100-kilometer-thick mantle (23%–28% of Ceres by mass; 50% by volume) contains up to 200 million cubic kilometers of water, which would be more than the amount of fresh water on Earth. This result is supported by the observations made by the Keck telescope in 2002 and by evolutionary modeling. Also, some characteristics of its surface and history (such as its distance from the Sun, which weakened solar radiation enough to allow some fairly low-freezing-point components to be incorporated during its formation), point to the presence of volatile materials in the interior of Ceres. It has been suggested that a remnant layer of liquid water may have survived to the present under a layer of ice.

Shape and gravity field measurements by Dawn confirm Ceres is a body in hydrostatic equilibrium with partial differentiation and isostatic compensation, with a mean moment of inertia of 0.37 (which is similar to that of Callisto at ~0.36). The densities of the core and outer layer are estimated to be 2.46–2.90 and 1.68–1.95 g/cm3, with the latter being about 70–190 km thick. Only partial dehydration of the core is expected. The high density of the outer layer (relative to water ice) reflects its enrichment in silicates and salts. Ceres is the smallest object confirmed to be in hydrostatic equilibrium, being 600 km smaller and less than half the mass of Saturn's moon Rhea, the next smallest such object. Modeling has suggested Ceres could have a small metallic core from partial differentiation of its rocky fraction.

Atmosphere


There are indications that Ceres has a tenuous water vapor atmosphere outgassing from water ice on the surface.

Surface water ice is unstable at distances less than 5 AU from the Sun, so it is expected to sublime if it is exposed directly to solar radiation. Water ice can migrate from the deep layers of Ceres to the surface, but escapes in a very short time. As a result, it is difficult to detect water vaporization. Water escaping from polar regions of Ceres was possibly observed in the early 1990s but this has not been unambiguously demonstrated. It may be possible to detect escaping water from the surroundings of a fresh impact crater or from cracks in the subsurface layers of Ceres. Ultraviolet observations by the IUE spacecraft detected statistically significant amounts of hydroxide ions near Ceres' north pole, which is a product of water vapor dissociation by ultraviolet solar radiation.

In early 2014, using data from the Herschel Space Observatory, it was discovered that there are several localized (not more than 60 km in diameter) mid-latitude sources of water vapor on Ceres, which each give off approximately 1026 molecules (or 3 kg) of water per second. Two potential source regions, designated Piazzi (123°E, 21°N) and Region A (231°E, 23°N), have been visualized in the near infrared as dark areas (Region A also has a bright center) by the W. M. Keck Observatory. Possible mechanisms for the vapor release are sublimation from approximately 0.6 km2 of exposed surface ice, or cryovolcanic eruptions resulting from radiogenic internal heat or from pressurization of a subsurface ocean due to growth of an overlying layer of ice. Surface sublimation would be expected to be lower when Ceres is farther from the Sun in its orbit, whereas internally powered emissions should not be affected by its orbital position. The limited data available was more consistent with cometary-style sublimation; however, subsequent evidence from Dawn strongly suggests ongoing geologic activity could be at least partially responsible.

Studies using Dawn's gamma ray and neutron detector (GRaND) reveal that Ceres is accelerating electrons from the solar wind regularly; although there are several possibilities as to what is caus

ing this, the most accepted is that these electrons are being accelerated by collisions between the solar wind and a tenuous water vapor exosphere.

In 2017, Dawn confirmed that Ceres has a transient atmosphere that appears to be linked to solar activity. Ice on Ceres can sublimate when energetic particles from the Sun hit exposed ice within craters.

Origin and evolution


Ceres is possibly a surviving protoplanet (planetary embryo), which formed 4.57 billion years ago in the asteroid belt. Although the majority of inner Solar System protoplanets (including all lunar- to Mars-sized bodies) either merged with other protoplanets to form terrestrial planets or were ejected from the Solar System by Jupiter, Ceres is thought to have survived relatively intact. An alternative theory proposes that Ceres formed in the Kuiper belt and later migrated to the asteroid belt. The discovery of ammonia salts in Occator crater supports an origin in the outer Solar System. Another possible protoplanet, Vesta, is less than half the size of Ceres; it suffered a major impact after solidifying, losing ~1% of its mass.

The geological evolution of Ceres was dependent on the heat sources available during and after its formation: friction from planetesimal accretion, and decay of various radionuclides (possibly including short-lived extinct radionuclides such as aluminium-26). These are thought to have been sufficient to allow Ceres to differentiate into a rocky core and icy mantle soon after its formation. This process may have caused resurfacing by water volcanism and tectonics, erasing older geological features. Ceres's relatively warm surface temperature implies that any of the resulting ice on its surface would have gradually sublimated, leaving behind various hydrated minerals like clay minerals and carbonates.

Today, Ceres has become considerably less geologically active, with a surface sculpted chiefly by impacts; nevertheless, evidence from Dawn reveals that internal processes have continued to sculpt Ceres's surface to a significant extent, in stark contrast to Vesta and of previous expectations that Ceres would have become geologically dead early in its history due to its small size. The presence of significant amounts of water ice in its composition and evidence of recent geological resurfacing, raises the possibility that Ceres has a layer of liquid water in its interior. This hypothetical layer is often called an ocean. If such a layer of liquid water exists, it is hypothesized to be located between the rocky core and ice mantle like that of the theorized ocean on Europa. The existence of an ocean is more likely if solutes (i.e. salts), ammonia, sulfuric acid or other antifreeze compounds are dissolved in the water.

Observation



When Ceres has an opposition near the perihelion, it can reach a visual magnitude of +6.7. This is generally regarded as too dim to be seen with the naked eye, but under exceptional viewing conditions a very sharp-sighted person may be able to see it. The only other asteroids that can reach a similarly bright magnitude are 4 Vesta, and, during rare oppositions near perihelion, 2 Pallas and 7 Iris. At a conjunction Ceres has a magnitude of around +9.3, which corresponds to the faintest objects visible with 10×50 binoculars. It can thus be seen with binoculars whenever it is above the horizon of a fully dark sky.

Some notable observations and milestones for Ceres include:

             1984 November 13: An occultation of a star by Ceres observed in Mexico, Florida and across the Caribbean.

             1995 June 25: Ultraviolet Hubble Space Telescope images with 50-kilometer resolution.

             2002: Infrared images with 30-km resolution taken with the Keck telescope using adaptive optics.

             2003 and 2004: Visible light images with 30-km resolution (the best prior to the Dawn mission) taken using Hubble.

             2012 December 22: Ceres occulted the star TYC 1865-00446-1 over parts of Japan, Russia, and China. Ceres' brightness was magnitude 6.9 and the star, 12.2.

             2014: Ceres was found to have an atmosphere with water vapor, confirmed by the Herschel space telescope.

             2015: The NASA Dawn spacecraft approached and orbited Ceres, sending detailed images and scientific data back to Earth.

Exploration


Artist's conception of Dawn, travelling from Vesta to Ceres

In 1981, a proposal for an asteroid mission was submitted to the European Space Agency (ESA). Named the Asteroidal Gravity Optical and Radar Analysis (AGORA), this spacecraft was to launch some time in 1990–1994 and perform two flybys of large asteroids. The preferred target for this mission was Vesta. AGORA would reach the asteroid belt either by a gravitational slingshot trajectory past Mars or by means of a small ion engine. However, the proposal was refused by ESA. A joint NASA–ESA asteroid mission was then drawn up for a Multiple Asteroid Orbiter with Solar Elec

tric Propulsion (MAOSEP), with one of the mission profiles including an orbit of Vesta. NASA indicated they were not interested in an asteroid mission. Instead, ESA set up a technological study of a spacecraft with an ion drive. Other missions to the asteroid belt were proposed in the 1980s by France, Germany, Italy, and the United States, but none were approved. Exploration of Ceres by fly-by and impacting penetrator was the second main target of the second plan of the multiaimed Soviet Vesta mission, developed in cooperation with European countries for realisation in 1991–1994 but canceled due to the Soviet Union disbanding.


First asteroid image (Ceres and Vesta) from Mars – viewed by Curiosity (20 April 2014)

In the early 1990s, NASA initiated the Discovery Program, which was intended to be a series of low-cost scientific missions. In 1996, the program's study team recommended as a high priority a mission to explore the asteroid belt using a spacecraft with an ion engine. Funding for this program remained problematic for several years, but by 2004 the Dawn vehicle had passed its critical design review.

It was launched on 27 September 2007, as the space mission to make the first visits to both Vesta and Ceres. On 3 May 2011, Dawn acquired its first targeting image 1.2 million kilometers from Vesta. After orbiting Vesta for 13 months, Dawn used its ion engine to depart for Ceres, with gravitational capture occurring on 6 March 2015 at a separation of 61,000 km, four months prior to the New Horizons flyby of Pluto.

Dawn's mission profile calls for it to study Ceres from a series of circular polar orbits at successively lower altitudes. It entered its first observational orbit ("RC3") around Ceres at an altitude of 13,500 km on 23 April 2015, staying for only approximately one orbit (fifteen days). The spacecraft will subsequently reduce its orbital distance to 4,400 km for its second observational orbit ("survey") for three weeks, then down to 1,470 km ("HAMO;" high altitude mapping orbit) for two months and then down to its final orbit at 375 km ("LAMO;" low altitude mapping orbit) for at least three months. The spacecraft instrumentation includes a framing camera, a visual and infrared spectrometer, and a gamma-ray and neutron detector. These instruments will examine Ceres' shape and elemental composition. On 13 January 2015, Dawn took the first images of Ceres at near-Hubble resolution, revealing impact craters and a small high-albedo spot on the surface, near the same location as that observed previously. Additional imaging sessions, at increasingly better resolution took place on 25 January, 4, 12, 19, and 25 February, 1 March, and 10 and 15 April.

Dawn's arrival in a stable orbit around Ceres was delayed after, close to reaching Ceres, it was hit by a cosmic ray, making it take another, longer route around Ceres in back, instead of a direct spiral towards it.

The Chinese Space Agency is designing a sample retrieval mission from Ceres that would take place during the 2020s.

Vesta: Minor Planet,Asteroid,Internal Structure,Atmosphere,Exploration

Vesta 

(Vesta: Minor Planet,Asteroid,Internal Structure,Atmosphere,Exploration)

Vesta in natural color.jpg
Vesta, minor-planet designation 4 Vesta, is one of the largest objects in the asteroid belt, with a mean diameter of 525 kilometres (326 mi). It was discovered by the German astronomer Heinrich Wilhelm Olbers on 29 March 1807 and is named after Vesta, the virgin goddess of home and hearth from Roman mythology.
Vesta is the second-most-massive and second-largest body in the asteroid belt after the dwarf planet Ceres, and it contributes an estimated 9% of the mass of the asteroid belt. It is slightly larger than Pallas, though significantly more massive. Vesta is the last remaining rocky protoplanet (with a differentiated interior) of the kind that formed the terrestrial planets. Numerous fragments of Vesta were ejected by collisions one and two billion years ago that left two enormous craters occupying much of Vesta's southern hemisphere. Debris from these events has fallen to Earth as howardite–eucrite–diogenite (HED) meteorites, which have been a rich source of information about Vesta.
Vesta is the brightest asteroid visible from Earth. Its maximum distance from the Sun is slightly greater than the minimum distance of Ceres from the Sun, though its orbit lies entirely within that of Ceres.
NASA's Dawn spacecraft entered orbit around Vesta on 16 July 2011 for a one-year exploration and left orbit on 5 September 2012 en route to its final destination, Ceres. Researchers continue to examine data collected by Dawn for additional insights into the formation and history of Vesta.

Discovery

Heinrich Olbers discovered Pallas in 1802, the year after the discovery of Ceres. He proposed that the two objects were the remnants of a destroyed planet. He sent a letter with his proposal to the English astronomer William Herschel, suggesting that a search near the locations where the orbits of Ceres and Pallas intersected might reveal more fragments. These orbital intersections were located in the constellations of Cetus and Virgo. Olbers commenced his search in 1802, and on 29 March 1807 he discovered Vesta in the constellation Virgo—a coincidence, because Ceres, Pallas, and Vesta are not fragments of a larger body. Because the asteroid Juno had been discovered in 1804, this made Vesta the fourth object to be identified in the region that is now known as the asteroid belt. The discovery was announced in a letter addressed to German astronomer Johann H. Schröter dated 31 March. Because Olbers already had credit for discovering a planet (Pallas; at the time, the asteroids were considered to be planets), he gave the honor of naming his new discovery to German mathematician Carl Friedrich Gauss, whose orbital calculations had enabled astronomers to confirm the existence of Ceres, the first asteroid, and who had computed the orbit of the new planet in the remarkably short time of 10 hours. Gauss decided on the Roman virgin goddess of home and hearth, Vesta.

Orbit

Vesta orbits the Sun between Mars and Jupiter, within the asteroid belt, with a period of 3.6 Earth years, specifically in the inner asteroid belt, interior to the Kirkwood gap at 2.50 AU. Its orbit is moderately inclined (i = 7.1°, compared to 7° for Mercury and 17° for Pluto) and moderately eccentric (e = 0.09, about the same as for Mars).
True orbital resonances between asteroids are considered unlikely; due to their small masses relative to their large separations, such relationships should be very rare. Nevertheless, Vesta is able to capture other asteroids into temporary 1:1 resonant orbital relationships (for periods up to 2 million years or more); about forty such objects have been identified. Decameter-sized objects detected in the vicinity of Vesta by Dawn may be such quasi-satellites rather than proper satellites.

Exploration 

In 1981, a proposal for an asteroid mission was submitted to the European Space Agency (ESA). Named the Asteroidal Gravity Optical and Radar Analysis (AGORA), this spacecraft was to launch some time in 1990–1994 and perform two flybys of large asteroids. The preferred target for this mission was Vesta. AGORA would reach the asteroid belt either by a gravitational slingshot trajectory past Mars or by means of a small ion engine. However, the proposal was refused by the ESA. A joint NASA–ESA asteroid mission was then drawn up for a Multiple Asteroid Orbiter with Solar Electric Propulsion (MAOSEP), with one of the mission profiles including an orbit of Vesta. NASA indicated they were not interested in an asteroid mission. Instead, the ESA set up a technological study of a spacecraft with an ion drive. Other missions to the asteroid belt were proposed in the 1980s by France, Germany, Italy and the United States, but none were approved. Exploration of Vesta by fly-by and impacting penetrator was the second main target of the first plan of the multi-aimed Soviet Vesta mission, developed in cooperation with European countries for realisation in 1991–1994 but canceled due to the Soviet Union disbanding.
In the early 1990s, NASA initiated the Discovery Program, which was intended to be a series of low-cost scientific missions. In 1996, the program's study team recommended a mission to explore the asteroid belt using a spacecraft with an ion engine as a high priority. Funding for this program remained problematic for several years, but by 2004 the Dawn vehicle had passed its critical design review and construction proceeded.
It launched on 27 September 2007 as the first space mission to Vesta. On 3 May 2011, Dawn acquired its first targeting image 1.2 million kilometers from Vesta. On 16 July 2011, NASA confirmed that it received telemetry from Dawn indicating that the spacecraft successfully entered Vesta's orbit. It was scheduled to orbit Vesta for one year, until July 2012. Dawn's arrival coincided with late summer in the southern hemisphere of Vesta, with the large crater at Vesta's south pole (Rheasilvia) in sunlight. Because a season on Vesta lasts eleven months, the northern hemisphere, including anticipated compression fractures opposite the crater, would become visible to Dawn's cameras before it left orbit. Dawn left orbit around Vesta on 4 September 2012 11:26 p.m. PDT to travel to Ceres.
NASA/DLR released imagery and summary information from a survey orbit, two high-altitude orbits (60–70 m/pixel) and a low-altitude mapping orbit (20 m/pixel), including digital terrain models, videos and atlases. Scientists also used Dawn to calculate Vesta's precise mass and gravity field. The subsequent determination of the J2 component yielded a core diameter estimate of about 220 km assuming a crustal density similar to that of the HED.

Physical characteristics 

Vesta is the second-most-massive body in the asteroid belt, though only 28% as massive as Ceres. Vesta's density is lower than that of the four terrestrial planets, but higher than that of most asteroids and all of the moons in the Solar System except Io. Vesta's surface area is about the same as that of Pakistan (about 800,000 square kilometers). It has a Geologic map of Vesta[65] PIA18788-VestaAsteroid-GeologicMap-DawnMission-20141117.jpgdifferentiated interior. Vesta is only slightly larger (525.4±0.2 km) than 2 Pallas (512±3 km) in volume, but is about 25% more massive.
Vesta's shape is close to a gravitationally relaxed oblate spheroid, but the large concavity and protrusion at the southern pole (see 'Surface features' below) combined with a mass less than 5×1020 kg precluded Vesta from automatically being considered a dwarf planet under International Astronomical Union (IAU) Resolution XXVI 5. A 2012 analysis of Vesta's shape and gravity field using data gathered by the Dawn spacecraft has shown that Vesta is currently not in hydrostatic equilibrium.
Temperatures on the surface have been estimated to lie between about −20 °C with the Sun overhead, dropping to about −190 °C at the winter pole. Typical daytime and nighttime temperatures are −60 °C and −130 °C respectively. This estimate is for 6 May 1996, very close to perihelion, although details vary somewhat with the seasons.